24

Integrationsregeln

Jörn Loviscach

Versionsstand: 29. September 2012, 19:48

Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3L7h.de/videos.html

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Partielle Integration

Wie kann man die Produktregel der Ableitung rückwärts lesen, um etwas über ein Integral zu erfahren?
integral zu erfahren:
Die Produktregel gibt uns eine Stammfunktion für $f'g + fg'$. Also kann man das
bestimmte Integral dieser Funktion ausrechnen:
Umstellen liefert die Regel zur partiellen Integration [integration by parts], also
zu "teilweisen" Integration:

3
Grob gesagt, kann man also im Integral eine Ableitung auf den anderen Faktor überwälzen, wenn man das Vorzeichen ändert und noch einen Randterm dazuschreibt. Das lässt sich auch mit Stammfunktionen = unbestimmten Integralen schreiben:
Partielle Integration ist dann praktisch, wenn die zu integrierende Funktion ein Produkt zweier Faktoren ist, von denen einer durch Ableiten deutlich handlicher wird und der andere durch Integrieren = Bilden der Stammfunktion nicht schlimmer wird. Beispiel: $\int_3^5 x \cos(x) dx =$
Wolfram Alpha führt das vor, wenn man statt des bestimmten Integrals integrate $x \cos(x)$ from 3 to 5 das unbestimmte Integral integrate $x \cos(x)$ abfragt und dann auf "Show steps" klickt.
2 Substitutionsregel
Wie kann man die Kettenregel der Ableitung rückwärts lesen, um etwas über ein Integral zu erfahren? Schreiben wir die Kettenregel für die Ableitung von $x \mapsto F(u(x))$ hin, wobei F eine Stammfunktion zu f sein soll:

Die Kettenregel gibt uns eine Stammfunktion für $x \mapsto f(u(x)) \, u'(x)$. Also kann man

das bestimmte Integral dieser Funktion ausrechnen:
Nun kann man noch auf der anderen Seite f statt F ins Spiel bringen und hat die Substitutionsregel [integration by substitution]:
8
Die innere Funktion $x \mapsto u(x)$ wird durch eine Variable u substitutiert, das heißt ersetzt. Ingenieurmäßig schreibt man gerne $u'(x)$ als $\frac{du}{dx}$ und kürzt formal:
9
Aber Vorsicht: Die Integrationsgrenzen anpassen!
Die Substitutionsregel is hilfreich, wenn man verkettete Funktionen integieren muss – und irgendwie die innere Ableitung u' dazudichten kann. Beispiel: $\int_3^5 x \cos(x^2) dx =$
10

Wolfram Alpha führt das vor, so wie im vorigen Abschnitt beschrieben.

3 Integration durch Partialbruchzerlegung

Jede rationale Funktion lässt sich in Partialbrüche zerlegen (hatten wir schon), so dass man dann nur noch für die Partialbrüche Stammfunktionen suchen muss. Hier kommen Muster für Partialbrüche, die dabei auftreten. Auch das führt Wolfram Alpha vor (siehe den ersten Abschnitt dieses Skripts), allerdings ohne die Betragsstriche im natürlichen Logarithmus.

$$\int_{11} \frac{7}{x-3} \, dx =$$

$$\int_{12}^{\infty} \frac{7}{(x-3)^5} \, dx =$$

Dies hier rechnen wir lieber nur nach:

$$\int \frac{2x+5}{x^2+3x+7} dx = \ln|x^2+3x+7| + \frac{4}{\sqrt{19}} \arctan\left(\frac{2x+3}{\sqrt{19}}\right) + C.$$

Denn:

Offensichtlich sorgt der \ln für den Term mit x in Zähler und der arctan für den konstanten Term in Zähler. Das kann man natürlich allgemein so machen.

Im Prinzip könnte auch etwas wie $\int \frac{2x^3+5x^2-2x+3}{(x^2+3x+7)^2} dx$ usw. auftreten. Aber dann zerlegt man die rationale Funktion besser komplett mit Hilfe komplexer Nullstellen.

Achtung: Rationale Funktionen lassen sich nicht über Polstellen weg oder bis genau zu Polstellen hin integrieren. Folgende Flächen sind unendlich groß:

14							
$(\operatorname{Mit} x \mapsto 1$	$/\sqrt{x}$ ist das	etwas Ande	res; das ist	aber auch	keine rati	onale Funk	tion!)
					keine rati	onale Funk	tion!)
		etwas Ande echnen mit S			keine rati	onale Funk	tion!)
					keine rati	onale Funk	tion!)
					keine rati	onale Funk	tion!)
					keine rati	onale Funk	tion!)
					keine rati	onale Funk	tion!)
					keine rati	onale Funk	tion!)
					keine rati	onale Funk	tion!)

5

3 INTEGRATION DURCH PARTIALBRUCHZERLEGUNG